Convergence Analysis of Discrete Differential Geometry Operators over Surfaces
نویسندگان
چکیده
In this paper, we study the convergence property of several discrete schemes of the surface normal. We show that the arithmetic mean, area-weighted averaging, and angle-weighted averaging schemes have quadratic convergence rate for a special triangulation scenario of the surfaces. By constructing a counterexample, we also show that it is impossible to find a discrete scheme of normals that has quadratic convergence rate over any triangulated surface and hence give a negative answer for the open question raised by D.S.Meek and D.J. Walton. Moreover, we point out that one cannot build a discrete scheme for Gaussian curvature, mean curvature and Laplace-Beltrami operator that converges over any triangulated surface.
منابع مشابه
Convergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملNumerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces
This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.
متن کاملDiscrete Laplace-Beltrami operators and their convergence
The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...
متن کاملConvergence of Discrete Laplace-Beltrami Operators over Surfaces
The convergence property of the discrete Laplace-Beltrami operator is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. The aim of this paper is to review several already used discrete Laplace-Beltrami operators over triangulated surface and study numerically as well as theoretically their conv...
متن کاملHigh-order algorithms for solving eigenproblems over discrete surfaces
The eigenvalue problem of the Laplace-Beltrami operators on curved surfaces plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve this operator. In this note we shall combine the local tangential lifting (LTL) method with the configuration equation to develop a new effective and convergent algori...
متن کامل